584 research outputs found

    Transcutaneous measurement of volume blood flow

    Get PDF
    Blood flow velocity measurements, using Doppler velocimeter, are described. The ability to measure blood velocity using ultrasound is derived from the Doppler effect; the change in frequency which occurs when sound is reflected or transmitted from a moving target. When ultrasound of the appropriate frequency is transmitted through a moving blood stream, the blood cells act as point scatterers of ultrasonic energy. If this scattered ultrasonic energy is detected, it is found to be shifted in frequency according to the velocity of the blood cells, nu, the frequency of the incident sound, f sub o, the speed of sound in the medium, c, and the angle between the sound beam and the velocity vector, o. The relation describing this effect is known as the Doppler equation. Delta f = 2 f sub o x nu x cos alpha/c. The theoretical and experimental methods are evaluated

    Experimental evidence of a natural parity state in 26^{26}Mg and its impact to the production of neutrons for the s process

    Get PDF
    We have studied natural parity states in 26^{26}Mg via the 22^{22}Ne(6^{6}Li,d)26^{26}Mg reaction. Our method significantly improves the energy resolution of previous experiments and, as a result, we report the observation of a natural parity state in 26^{26}Mg. Possible spin-parity assignments are suggested on the basis of published γ\gamma-ray decay experiments. The stellar rate of the 22^{22}Ne(α\alpha,γ\gamma)26^{26}Mg reaction is reduced and may give rise to an increase in the production of s-process neutrons via the 22^{22}Ne(α\alpha,n)25^{25}Mg reaction.Comment: Published in PR

    Quantifying Resonant Structure in NGC 6946 from Two-dimensional Kinematics

    Full text link
    We study the two-dimensional kinematics of the H-alpha-emitting gas in the nearby barred Scd galaxy, NGC 6946, in order to determine the pattern speed of the primary m=2 perturbation mode. The pattern speed is a crucial parameter for constraining the internal dynamics, estimating the impact velocities of the gravitational perturbation at the resonance radii, and to set up an evolutionary scenario for NGC 6946. Our data allows us to derive the best fitting kinematic position angle and the geometry of the underlying gaseous disk, which we use to derive the pattern speed using the Tremaine-Weinberg method. We find a main pattern speed Omega_p=22 km/s/kpc, but our data clearly reveal the presence of an additional pattern speed Omega_p=47 km/s/kpc in a zone within 1.25 kpc of the nucleus. Using the epicyclic approximation, we deduce the location of the resonance radii and confirm that inside the outer Inner Lindblad Resonance radius of the main oval, a primary bar has formed rotating at more than twice the outer pattern speed. We further confirm that a nuclear bar has formed inside the Inner Lindblad Resonance radius of the primary bar, coinciding with the inner Inner Lindblad Resonance radius of the large-scale m=2 mode oval.Comment: Accepted for publication in ApJ Letter

    Spatially explicit species distribution models: A missed opportunity in conservation planning?

    Get PDF
    Aim: Systematic conservation planning is vital for allocating protected areas given the spatial distribution of conservation features, such as species. Due to incomplete species inventories, species distribution models (SDMs) are often used for predicting species habitat suitability and species probability of occurrence. Currently, SDMs mostly ignore spatial dependencies in species and predictor data. Here, we provide a comparative evaluation of how accounting for spatial dependencies, that is, autocorrelation, affects the delineation of optimized protected areas. Location: Southeast Australia, Southeast U.S. Continental Shelf, Danube River Basin. Methods: We employ Bayesian spatially explicit and non-spatial SDMs for terrestrial, marine and freshwater species, using realm-specific planning unit shapes (grid, hexagon and subcatchment, respectively). We then apply the software gurobi to optimize conservation plans based on species targets derived from spatial and non-spatial SDMs (10% 50% each to analyse sensitivity), and compare the delineation of the plans. Results: Across realms and irrespective of the planning unit shape, spatially explicit SDMs (a) produce on average more accurate predictions in terms of AUC, TSS, sensitivity and specificity, along with a higher species detection probability. All spatial optimizations meet the species conservation targets. Spatial conservation plans that use predictions from spatially explicit SDMs (b) are spatially substantially different compared to those that use non-spatial SDM predictions, but (c) encompass a similar amount of planning units. The overlap in the selection of planning units is smallest for conservation plans based on the lowest targets and vice versa. Main conclusions: Species distribution models are core tools in conservation planning. Not surprisingly, accounting for the spatial characteristics in SDMs has drastic impacts on the delineation of optimized conservation plans. We therefore encourage practitioners to consider spatial dependencies in conservation features to improve the spatial representation of future protected areas. © 2019 The Authors. Diversity and Distributions Published by John Wiley and Sons LtdThis study was funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 642317. SDL has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska‐Curie grant agreement No. 748625, and SCJ from the German Federal Ministry of Education and Research (BMBF) for the “GLANCE” project (Global Change Effects in River Ecosystems; 01 LN1320A). We wish to thank Gwen Iacona and two anonymous referees for their constructive comments on an earlier version of the manuscript

    Atomic and Molecular Gas Components in Spiral Galaxies of the Virgo Cluster

    Full text link
    Based on two models, we investigate the molecular-to-atomic gas ratio in Virgo cluster galaxies in comparison with field galaxies. We show that the enhanced metallicity for cluster members and the ram pressure stripping of atomic gas from the disk periphery cannot fully explain the observed gas component ratios. The additional environmental factors affecting the interstellar medium and leading to an increase in the molecular gas fraction should be taken into account for cluster galaxies.Comment: 11 pages, 4 figure

    The rapid formation a large rotating disk galaxy three billion years after the Big Bang

    Get PDF
    [Abridged] Over the past two decades observations and theoretical simulations have established a global frame-work of galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark matter halos. Mergers of halos led to the build up of galaxy mass. A major step forward in understanding these issues requires well resolved physical information on individual galaxies at high redshift. Here we report adaptive optics, spectroscopic observations of a representative luminous star forming galaxy when the Universe was only twenty percent of its age. The superior angular resolution of these data reveals the physical and dynamical properties of a high redshift galaxy in unprecedented detail. A large and massive rotating proto-disk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole.Comment: Narure, accepted (Released Aug 17th

    First Case Start Times for Vascular Surgery

    Get PDF
    Problem/Impact Statement: 85% of first cases at Maine Medical Center for Vascular Surgery start late. According to one study done by Aurora Health Care; of 5,500 first case surgeries, 88% of them started late. The impact of this is far reaching. It is not in alignment with MMC value of Patient Centered Care because the patient becomes dissatisfied waiting to be brought in to surgery , they are fasting for longer than anticipated, and being away from their family while they wait causing anxiety. The financial impact is $1995 for each 1⁄2 hr. of O.R. time. Furthermore, this may result in elective cases being canceled, late cases create a back log of cases to be done, the hospital loses potential revenue, and staff stay later causing overtime accrual

    Gravitational stability and dynamical overheating of stellar disks of galaxies

    Full text link
    We use the marginal stability condition for galactic disks and the stellar velocity dispersion data published by different authors to place upper limits on the disk local surface density at two radial scalelengths R=2hR=2h. Extrapolating these estimates, we constrain the total mass of the disks and compare these estimates to those based on the photometry and color of stellar populations. The comparison reveals that the stellar disks of most of spiral galaxies in our sample cannot be substantially overheated and are therefore unlikely to have experienced a significant merging event in their history. The same conclusion applies to some, but not all of the S0 galaxies we consider. However, a substantial part of the early type galaxies do show the stellar velocity dispersion well in excess of the gravitational stability threshold suggesting a major merger event in the past. We find dynamically overheated disks among both seemingly isolated galaxies and those forming pairs. The ratio of the marginal stability disk mass estimate to the total galaxy mass within four radial scalelengths remains within a range of 0.4---0.8. We see no evidence for a noticeable running of this ratio with either the morphological type or color index.Comment: 25 pages, 5 figures, accepted to Astronomy Letter
    • 

    corecore